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SUMMARY

A model similar to the McDonnell F3H-2N airplane has been tested
at transonic speeds by the Nationsl Advisory Committee for Aeromautics
with the free-flight technique to determine its pitch-up and buffet
boundaries in addition to the longitudinal stability and control data
obtainable with the pulse-tail technique. Examination of the data
revealed that at transonic speeds the stability is less at low trim
angles of attack than at high trim angles of attack up to a limit. Beyond
this limiting angle, the stability was reduced and became zero at angles
of attack varying from 13° at M = 0.7 to 9° at M = 0.9. It was not
possible to determine the buffet boundary.

INTRODUCTION

At the request of the Bureau of Aeronautics, Department of the Navy,
the National Advisory Committee for Aeronautics has tested a model similar
to the McDonnell F3H-2N airplane by the free-flight technique to determine

its pitch-up and maneuver buffet boundaries in addition to the longitu-
dinal stability and control data obtainable with the pulse-tail technique.
Previous free-flight tests of models of the McDonnell XF3H-1 and F3H-1N
configurations are reported in references 1, 2, and 3. Results of the
present test are presented herein with nc detailed analysis in order to
expedite publication. The model was supplied by the McDonnell Aircraft
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Corporation and the test was made at the Pilotless Aircraft Research
Station at Wallops Island, Va.

SYMBOLS

Positive directions of forces, moments, and displacements are indi-
cated in figure 1.

AT, acceleration parallel to fuselage center line, g units
Ay acceleration perpendicular to fuselage center line, g units
Amq acceleration perpendicular to plane of symmetry, g units
c wing mean aercdynamic chord, ft
Cam wing bending-moment coefficient, Aerodynamic gegdlng moment’
L=l
about 23.4 percent at spanwise station
. _ W
Ce chord force coefficient, Ach 3s
Cop drag coefficient, Cy sin a + C, cOs a
Cy, 1ift coefficient, Cycos a - Ce sin a
0T, Value of Cp on oscillation envelope - CLt

ACy " Max value of (], on oscillation envelope - CL4

Cm

pitching-momen* coefficient about center of gravity,

Iy %(ANN ~ Ang)

aSc

dynamic-longitudinal-stability parameter, radian measure

¥,

normal-force coefficient, ANcg rr
lateral-force coefficient, Ap %%
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acceleration due to gravity, ft/sec®

mass moment of inertia of model in roll, Slug-ft2

mass moment Of inertia of model in pitch, slug—ft2

mass moment of inertia of model in yaw, slug—ft2

longitudinal distance between normal accelerometers
lift-drag ratio
free-stream Mach number

pressure measured on upper surface of right wing minus
free-stream static pressure, 1b/sq ft

period of longitudinal motion, sec
free-stream static pressure, 1b/sq ft
free-stream dynamic pressure, O.TpmM2
Reynolds number based on ¢

free-stream static temperature, deg Rankine
model wing area, sq ft

elapsed time after take off, sec

time for amplitude of longitudinal motion to damp to half
amplitude, sec

free-stream velocity, ft/sec
wind velocity, ft/sec
weight of model, 1b

aerodynamic~center location, distance aft leading edge of
mean aerodynamic chord, ft

angle of attack of fuselage reference at center of gravity,

deg

Value of o omn oscillation envelope - ot

JA's T " Max value of o on oscillation envelope - at

“




-
pevese
i J [ ]

] iyl ceoNfmeirgadlt I3 maca R st
2e® 2o ee tee 270 0e” W” 2 0 8 See o

4 flight-path angle, deg

9 angle of fuselage center line relative to fixed reference,
deg

e} deflection of horizontal stabilizer relative to fuselage
reference, deg

Vo direction from which wind is blowing, degrees from true
north

Subscripts:

av average

cg center of gravity

max maxirum

o value at minimum drag

N nose

t trim

Derivatives with respect to a quantity are indicated as shown in the
following example:

_

T da

Cmg

Specific conditions for which a quantity is evaluated are indicated as
shown in the following example:

Cn -0 = Pitching-moment coefficient at o = O

DESCRIPTION OF MODEL AND INSTRUMENTATION

Model

The model, described in figures 2(a), (b), (c), and (&) and table I,
was originally constructed as a 1/10-scale model of the McDonnell XF3H-1
airplane. Subsequently, a McDonnell F3H-2N wing was substituted, and
the XF3H-1 horizontal tail was relocated to the more aft position of the
F3H-2N horizontal-tail position. The actual F3H-2N fuselage is somewhat

m—
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fatter, and the horizontal tail is somewhat larger. This model is similar
in construction and instrumentation to the model described in reference 3.
An electrohydraulic system pulsed the entire horizontal stabilizer abruptly
between stops of about +1° and -6° relative to the fuselage center line.
There was no air flow through the model, since the ducts were blocked

Just inside the inlets.

Instrumentation

The model was instrumented so that Mach number, angle of attack,
1ift, drag, and pitching moment could be determined at every instant.
In addition, measurements of wing-root bending moment and absolute pres-
sure on the upper surface of the right wing (figs. 2(a) and (d)) were made
to aid in determining the buffet boundary. These data were transmitted
from the model by an NACA telemeter. Altitude of the model and meteoro-
logical conditions were determined from ground-based-radar and rawinsonde
measurements.

TESTS AND METHODS OF ANALYSIS

The model was tested by the free-flight rocket-boosted-model tech-
nique described in reference 4. Axes systems used in the reduction and
analysis of the data are shown in figure 1. A time history of some of
the more important quantities obtained as the model decelerated from
M =1.28 to 0.69 is given as figure 3. The test conditions are summa-
rized in figure k.

RESULTS AND DISCUSSION

The results of the test are given in figures 5 through 20. In order
to expedite publication of these data, no detailed analysis will be made.
However, several simple observations are worth noting.

Trim

In figure 5, the trim 1ift coefficient and angle of attack for
& ~ -6° show abrupt variations with Mach number near M = 0.9.
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Lift
In figures 6 and 7, it is seen that the lift-curve slope increases
with angle of attack. Also, near M = 0.7 to 0.8, Cg depends sig-
nificantly on the sign of &, figure T(c).

Drag

The drag data, figures 8, 9, 10, include base drag and, since the
model inlets were blocked off, an additive drag due to duct spillage.
Minirum drag, figure 10(a), seems to be affected somewhat by stabilizer
position. Since the XF3H-1 fuselage used on this model is somewhat more
slender than the actual F3H-2N fuselage, the minimm drag and (L/D)max

data obtained in this test can not be applied directly to the F3H-2N
airplane.

Dynamic Stability

The values of Cmq + Cm& presented in figure 11(c) were determined

for the low o range, except for the point at M = 1.1 which is for the
high o range. (These a ranges are defined in fig. 13(b).) The dashed
portion of the curve is less accurately defined than the solid part. -

Static Pitching Moment

Static stability.- By plotting Cp against a, figure 12, the
static-stability derivative Cp, was obtained as a function of a

(figs. 13(a) and (b)). The aerodynamic-center location (figs. 13(c)

and (d)) was obtained from plots of Cp against Cy, although these plots
are not presented. The results show (fig. 13) that at all Mach numbers

of the test, the stability is less at low at (® =~ +1°) than at high

at (& ~ -6°) up to a certain limit of angle of attack. Beyond this
limiting angle, the stability is reduced and becomes zero at angles of
attack varying from 13° at M = 0.7 to 9° at M = 0.9. The pitching-
moment coefficients at zero angle of attack and at zero lift, given in
figure 14 for the two stabilizer settings, exhibit no abrupt variationms
with Mach number. Again, caution must be used in applying these results

to the F3H-2N airplane because of the smaller horizontal tail used on the
test model.

Control effectiveness.- The effects of horizontal-stabilizer deflec-
tion on 1ift, drag, and static-pitching-moment ccefficients (fig. 15) are
also not directly applicable to the F3H-2N airplane.

%
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Aercdynamic Wing Bending Mcoment

As for the other quantities, this aerodynamic wing bending moment
is also markedly nonlinear with angle of attack (figs. 16 and 17)
indicating that most of the nonlinearities in total airplame forces and
mements can probably be traced to the direct ccentribution of the wing.
Since the 1ift on the portion of the wing outboard of the strain gage
was not measured separately, these data cannot be used to determine the
lateral center of pressure.

Wing Pressure Coefficient

The jump in when plotted against « (figs. 18 and 19) is

Dby ing
q
probably caused by the passage of 2 shock over the orifice location.
Note thafg at M= 0.95 (fig. 19(b)) this break occurs at

- : . ~ OO
a=-1.8 (Q'wnlg 0 ).

Buffet

The telemeter records were inspected in order to determine the
conditions under which buffet oscillations appeared. The results,
plotted in figures 20(a) and (b), were inconclusive; a spread of about
8° in angle of attack at M = 0.7 and of 3° at M = 0.9 is shown in
figure 20(Db).

CORCLUDING REMARKS

A model resembling the McDonnell F3H-2N airplane was tested at
transonic speeds by the free-flight technique primarily to determine
its pitch-up and buffet boundaries. Examination of the data revealed
that: ‘

1. At transonic speeds the stability is less at low trim angles of
attack than at high trim angles of attack up to a certain limit. Beyond
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this limiting angle, the stability was reduced and became zero at angles
of attack varying from 13° at M = 0.7 to 9° at M = 0.9.

| deee

oo 2. It was not possible to determine the buffet boundary.
: L ] ..
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Node 1lines
-<X-=- indicates node line occurring when
model was continuously shaken at X c¢ycles per secord.

2440 1%5 |

Accelerometer locatlons
A,normal at nose
B,normal at cg
C,chordwise
D,transverse

(c) Nodal lines and resonant frequencies at which they cecurred in the
shake tes

ct

Figure 2.- Continued.
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(b) Dynamic pressure.
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Figure L.- Test conditions.
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(2) Trim 1ift coefficient.
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(c) Stabilizer incidence relative to fuselage reference.

Figure 5.~ Trim characteristics.
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(c) C;, ranges for induced-drag factors.

Figure 10:- Drag summary.
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Figure 11.- Dynamic-stability summary.
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Figure 15.~ Static-stability summary.
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(c) Bending-moment intercept and maximum-bending-moment coefficient.

Figure 17.- Wing bending-moment summary.
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Figure 20.- Buffet sumary.
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ABSTRACT

A model resembling the McDonnell F3H-2N airplane was tested at
transonic speeds by the free-flight technique to determine its pitch-up
and buffet boundaries in addition to the longitudinal stability and
control data obtainable by the pulse-tail technique.




